

Survey on Handwritten Digit Recognition using Machine Learning

Uma Kavya, Dr.Ganesh D

Department of Master's Computer Application, Jain (Deemed-to-be University), Bengaluru-560069

Revised: 21-03-2022

Accepted: 25-03-2022

ABSTRACT

Machine learning and deep learning plays an important role in computer technology and artificial intelligence. With the use of deep learning and machine learning, human effort can be reduce in recognizing, learning, predictions and many more areas. This paper presents recognizing the handwritten digits (0 to 9) from the famous MNIST dataset, comparing classifiers like KNN, PSVM, NN and convolution neural network on basis of performance, accuracy, time, sensitivity, positive productivity, and specificity with using different parameters with the classifiers.

Keywords— Handwritten Digits, Vector Machine, Neural Networks, Convolution, Machine Learning

I.INTRODUCTION

For a beginner aspirant, starting hurdle in the field of deep learning and machine learning is the MNIST dataset for Handwritten Digit Recognition and system involves this understanding and recognition of 10 handwritten digits (0-9) by a machine. Handwritten Digit Recognition from the MNIST dataset has been very popular among researchers as by using various classifiers for different algorithms and parameters, the error rate has been reduced a lot such as from linear classifier (1-layer NN) with 12% to 0.23% by a committee of 35 convolution neural networks (YannLeCun, the MNIST database of Handwritten Digits). The scope of this study is to build an offline Handwritten Digit Recognition system and compare the different classifiers and combination methods by focusing on to achieve near the human performance. The handwritten digits are not always of the same size, thickness, or orientation and position relative to the margins. For a task of writing different digits (0-9) for different persons the general problem faced would be of digit classification problem and the similarity between the digits like 1 and 7, 5 and 6, 3 and 8, 9 and 8 etc. Also people write the same digit in many different ways. Finally, the uniqueness and variety in the

handwriting of different individuals also influence the formation and appearance of the digits [5]. Here comes the use of deep learning and machine learning. In recent years, deep learning and machine learning have become necessary for image processing, object detection, handwritten digit recognition, character recognition, segmenting images, and building automated machines which might process on their own[11][12][13][14][15].

II. MNIST DATASET

A. Understanding Dataset and Format.

Samples provide by MNIST (Modified National Institute of Standards and Technology) dataset consists of handwritten digits with a training set of 60,000 examples and a test set of 10,000 labeled images. This is a subset of a larger set available from NIST. The digits have been sizenormalized and centered in a fixed-size image. The images in the MNIST dataset are provided in form of 28x28 gray scale intensities of images representing an image along with labels. This is also the same in case of the 10,000 testing images (YannLeCun, the MNIST database of Handwritten Digits). The MNIST problem is a dataset developed by YannLeCun, Corinna Cortes and Christopher Burges for evaluating machine learning models on the handwritten digit classification problem (YannLeCun, the MNIST database of Handwritten Digits). The dataset was made from a number of scanned document dataset available from the National Institute of Standards and Technology (NIST). This is where the name was given as the Modified NIST or MNIST dataset. Images of digits were taken from various scanned digits, normalized in size and justify as centered. This makes it an excellent dataset for evaluating models and allowing the machine learning aspirant to focus on deep learning and machine learning with very little data cleaning (Machine Learning Mastery, CNN with Keras.). It is a digit recognition problem, as such there are 10 digits (0 to 9) or simply 10 classes to predict from. The first 5,000

examples of the test set are taken from the original NIST training set and remaining from the originalNIST test set. The first 5,000 are cleaner and easier than remaining (YannLeCun, the MNIST database of Handwritten Digits). There are 4 files in the dataset:

•train-images-idx3-ubyte: training set images

•train-labels-idx1-ubyte: training set labels

•t10k-images-idx3-ubyte: test set images

•t10k-labels-idx1-ubyte: test set labels Note -

• Pixels are arranged row-wise, ranging from 0 to 255, as from RGB color code.

• Background as white (0 value from RGB) and foreground as black (255 value from RGB).

• Labels of digits classified from 0 to 9. Above points are also understandable by changing the format to csv, as more neat, clean and easily understandable format gives these details.

B. Understanding Dataset

So, before starting further research, the better point should be to get familiar with the provided dataset. Here both the training and testing images and labels have the first two columns consisting of the 'magic number' and the number of items in the file (YannLeCun, the MNIST database of Handwritten Digits). The magic number has its first two bytes equal to zero. This magic number is read as MSB first and its format is as shown [1]:

FRAINING SET IMAGE FILE (train-images-idx3-ubyte):

offset]	[type]	[value]	[description]
9999	32 bit integer	0x00000803(2051)	magic number
3084	32 bit integer	68989	number of images
8008	32 bit integer	28	number of rows
9012	32 bit integer	28	number of columns
3016	unsigned byte	??	pixel
9017	unsigned byte	<u>??</u>	pixel
ocx	unsigned byte	??	pixel

Figure 1 Training set image file format

TRAINING SET LABEL FILE (train-labels-idx1-ubyte):

[offset]	[type]	[value]	[description]
0000	32 bit integer	0x00000801(2049)	magic number (MSB first)
8884	32 bit integer	68888	number of items
8966	unsigned byte	??	label
8889	unsigned byte	??	label

XXXX	unsigned byte	77	label
	and the second	Second Contraction	

Figure 2 Training set label file format

2 Bytes	1 Byte	I Byte
00	Data Type	Dimensions

Table 1-Magic number format

From figure 1, the magic number value for that images is 0x00000803(2051) and from figure 2, magic number is 0x00000801 (2049) value for labels.

Table 2 - Magic number for specified data -0x00000803(2051) and 0x00000801 (2049)

2 Bytes	1 Byte	1 Byte
00 00	08	03
00 00	08	01

This gives us the following information:

1. The 0000 (2 bytes) informing the beginning of the file.

2. 08 tells us that third byte is of unsigned byte type.

3. The fourth byte, 03 tells us that the matrix has three dimensions and 01 informing with just one dimension.

The third byte represents whether the data is an integer, float, short, long or unsigned type. The fourth byte tells the dimension of the vector or matrix i.e. the number of rows and columns. If it is equal to 1, then it's a vector else it is a matrix. The number of items variable is also read as MSB first. [1] B. IDX Format As our dataset is available in IDX format (YannLeCun, the MNIST database of Handwritten Digits), we can change our dataset into csv formats by algorithm (Joseph Chet Redmon, Algorithm to change idx into csv])and we can achieve MNIST dataset in csv format. The format of these is easy to understand:

• The first value is the "label", that is, the actual digit that the handwriting is supposed to represent, such as a "7" or "9". It is the answer to which the classifier is aspiring to classify.

• The subsequent values, all comma separated, are the pixel values of the handwritten digit. The size of the pixel array is 28 by 28, so there are 784 values after the label. (Joseph Chet Redmon, Algorithm to change idx into csv).

III. SURVEY OF HANDWRITTEN DIGIT RECOGNITION

Table 3: Review of Handwritten Digit Recognition

S.No.	Paper Name	Review				
[1]	Handwritten Digit Recognition Using Deep Learning					set. Below and testing
		Accuracy Comparison Table	RFC	KNN	SVM	CNN
	9	Trained classifier accuracy (in %)	99.71	99.71	99.71	99.71
	8	Accuracy on Test Images (in %)	96.89	96.67	97.91	98.72
	8	Training Time (in min)	10	15	14	70
		Testing Time (in min)	6	9	10	20
	Recognition using Proximal Support Vector Machine	proximal support vector machine over standard SVM classifier as the takes less time and performance of PSVM classifier is better the artificial neural network. Total of 20,000 samples taken for both training and testing data (1,00 samples for a digit) 10 class linear PSVM got 98.65% with training 59 milliseconds. The system has also maintained small dimension for feature vect without including an additional dimensionality reduction and le training time.			oetter than	
		10 class linear PSVM got 98.65% The system has also maintained without including an additional	l small di	mension	for feat	ure vector
[3]	Intelligent Handwritten Digit Recognition using Artificial Neural Network	10 class linear PSVM got 98.65% The system has also maintained without including an additional	l small di dimensio from MNI k propagat e number o k. aral networ sed system	mension onality IST, wittion and of hidder ok with	a for feat reduction as trained then test a units and 35 neuror	and less and less d with an ed with an d iterations as and 250
[3]	Digit Recognition using Artificial Neural Network Recognition of Handwritten Digits using Proximal Support Vector	10 class linear PSVM got 98.65% The system has also maintained without including an additional training time. A dataset of 5,000 examples algorithm of gradient descent bac algorithm of feed-forward with the and accuracy achieved was 99.329 Multilayer Perception (MLP) neu- iterations were found. The propo	l small di dimensio from MNI k propagat e number o 4. aral networ sed system cy. 'M and red PSVM class	mension anality IST, with tion and of hidder ik with a gave 3 luced tin sifier or	a for feat reduction as trained then tests a units and 35 neuron 99.32% ad	une vector and less I with an ed with an d iterations as and 250 securacy on 09 seconds
	Digit Recognition using Artificial Neural Network Recognition of Handwritten Digits using	10 class linear PSVM got 98.65% The system has also maintained without including an additional training time. A dataset of 5,000 examples algorithm of gradient descent bac algorithm of feed-forward with the and accuracy achieved was 99.329 Multilayer Perception (MLP) neu- iterations were found. The propo- training and 100% training accuras The accuracy of 98.65% with PSV (by ANN) to 59 milliseconds for 1	I small di dimension from MNI k propagate e number o 4. rral networ sed system 79. 74 and red 25VM class spectively. ANN	mension anality IST, with tion and of hidder ik with a gave 3 luced tin sifier or	a for feat reduction as trained then tests a units and 35 neuron 99.32% ad	une vector and less I with an ed with an d iterations as and 250 securacy on 09 seconds
	Digit Recognition using Artificial Neural Network Recognition of Handwritten Digits using Proximal Support Vector	10 class linear PSVM got 98.65% The system has also maintained without including an additional training time. A dataset of 5,000 examples algorithm of gradient descent bac algorithm of feed-forward with the and accuracy achieved was 99.329 Multilayer Perception (MLP) neu- iterations were found. The propo- training and 100% training accuras The accuracy of 98.65% with PSV (by ANN) to 59 milliseconds for 1 each of training and training set re-	I small di dimensio from MNI k propagat e number o k. aral networ sed system cy. M and red PSVM class spectively.	mension anality IST, with the and of hidden the with a gave s luced tim sifier or	a for feat reduction as trained then test a units and 35 neuror 99.32% ac ne from 10 a 10,000 s	une vector and less I with an ed with an d iterations as and 250 securacy on 09 seconds
	Digit Recognition using Artificial Neural Network Recognition of Handwritten Digits using Proximal Support Vector	10 class linear PSVM got 98.65% The system has also maintained without including an additional training time. A dataset of 5,000 examples algorithm of gradient descent bac algorithm of feed-forward with the and accuracy achieved was 99.329 Multilayer Perception (MLP) neu- iterations were found. The propo- training and 100% training accuracy The accuracy of 98.65% with PSV (by ANN) to 59 milliseconds for I each of training and training set re Parameters	I small di dimension from MNI k propagat e number o k and networ sed system cy. M and red PSVM class spectively. ANN epoch	mension anality IST, with the and of hidden the with a gave s luced tim sifier or	a for feat reduction as trained then test n units and 35 neuron 99.32% ac ne from 10 a 10,000 s	une vector and less I with an ed with an d iterations as and 250 securacy on 09 seconds
	Digit Recognition using Artificial Neural Network Recognition of Handwritten Digits using Proximal Support Vector	10 class linear PSVM got 98.65% The system has also maintained without including an additional training time. A dataset of 5,000 examples algorithm of gradient descent bac algorithm of feed-forward with the and accuracy achieved was 99.329 Multilayer Perception (MLP) neu- iterations were found. The propo- training and 100% training accuracy The accuracy of 98.65% with PSV (by ANN) to 59 milliseconds for I each of training and training set re Parameters Sensitivity (%)	small di dimension from MNI k propagat e number o k and networ sed system ty. M and red 2SVM class spectively. ANN epoch 91.84	mension anality IST, with the and of hidden the with a gave s luced tim sifier or	a for feat reduction as trained then test n units and 35 neuron 99.32% ad ne from 10 a 10,000 s PSVM 93.22	une vector and less I with an ed with an d iterations as and 250 securacy on 09 seconds

International Journal of Advances in Engineering and Management (IJAEM) Volume 4, Issue 3 Mar 2022, pp: 928- 934 www.ijaem.net ISSN: 2395-5252

		Training time (classifier) in seconds	109	0.059
[5]	Handwritten Digits Recognition	This report presents the impl Analysis (PCA) combined with 78.4% accuracy on MNIST datase Reason for inaccuracy was the me and classification. Therefore, it is to a more complex system. To examples in both the training and There are such samples where it is similarities between digits is much	a 1-nearest nei t. ost basic algorithr very hard to get g improve accurate testing should be s even difficult for	ghbor and achievin n for feature selectio good results compare by and better results increased. or a human to classify
[6]	A trainable feature extractor for handwritten	Accuracy comparison between N kernels.	N and SVM cla	assifiers with variou
	digit recognition	Classifier	Distortion	Test error (%)
	2	TFE - SVM		0.83
	22	LeNet5	Elastic	0.72
	8	LeNet5	Affine	0.68
	2	TFE - SVM	Elastic	0.56
		TFE - SVM	Affine	0.54
1771	The second se		the second	
[7]	Multi-column Deep Neural Networks for Image Classification	With the use of classifier of the or 150-10 [elastic distortions] and 1 0.23% accuracy can be achieved networks (MCDNN).	pre-processing of	width normalizatio
[8]	Neural Networks for	150-10 [elastic distortions] and p 0.23% accuracy can be achieved	pre-processing of from these mult error rate, simply 5% error percent s in each layer (width normalizatio i-column deep neuro defined as 35 out o age, with 6-layer Ni 784-2500-2000-1500
	Neural Networks for Image Classification Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition Best Practices for Convolution neural networks Applied to	150-10 [elastic distortions] and 1 0.23% accuracy can be achieved networks (MCDNN). Neural network has achieved an 10,000 digits misclassified or 0.3 architecture or number of neuron 1000-500-10) (on GPU) [elastic involved.	pre-processing of from these mult error rate, simply 5% error percent s in each layer (c distortions] an training, 10,000	width normalizatio i-column deep neuro defined as 35 out of age, with 6-layer N 784-2500-2000-1500 d no pre-processin 0 for validation an
[8]	Neural Networks for Image Classification Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition Best Practices for Convolution neural networks Applied to Visual Document	150-10 [elastic distortions] and p 0.23% accuracy can be achieved networks (MCDNN). Neural network has achieved an 10,000 digits misclassified or 0.3 architecture or number of neuron 1000-500-10) (on GPU) [elastic involved. Split training set in 50,000 for parameter adjustments and result	pre-processing of from these mult error rate, simply 5% error percent s in each layer (c distortions] an training, 10,000	width normalizatio i-column deep neuro defined as 35 out of age, with 6-layer N 784-2500-2000-1500 d no pre-processin 0 for validation an
[8]	Neural Networks for Image Classification Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition Best Practices for Convolution neural networks Applied to	150-10 [elastic distortions] and p 0.23% accuracy can be achieved networks (MCDNN). Neural network has achieved an 10,000 digits misclassified or 0.3 architecture or number of neuron 1000-500-10) (on GPU) [elastic involved. Split training set in 50,000 for parameter adjustments and result values on validation.	pre-processing of from these mult error rate, simply 5% error percent s in each layer (c distortions] an training, 10,000 s on test set wit	width normalizatio i-column deep neuro defined as 35 out of age, with 6-layer N 784-2500-2000-1500 d no pre-processin 0 for validation an h optimal parameter
[8]	Neural Networks for Image Classification Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition Best Practices for Convolution neural networks Applied to Visual Document	150-10 [elastic distortions] and p 0.23% accuracy can be achieved networks (MCDNN). Neural network has achieved an 10,000 digits misclassified or 0.3 architecture or number of neuron 1000-500-10) (on GPU) [elastic involved. Split training set in 50,000 for parameter adjustments and result values on validation. Algorithm	pre-processing of from these mult error rate, simply 5% error percent s in each layer (c distortions] an training, 10,000 s on test set wit Distortion	width normalizatio i-column deep neuro defined as 35 out of age, with 6-layer N3 784-2500-2000-1500 d no pre-processin 0 for validation an h optimal parameter Error (%)
[8]	Neural Networks for Image Classification Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition Best Practices for Convolution neural networks Applied to Visual Document	150-10 [elastic distortions] and p 0.23% accuracy can be achieved networks (MCDNN). Neural network has achieved an 10,000 digits misclassified or 0.3 architecture or number of neuron 1000-500-10) (on GPU) [elastic involved. Split training set in 50,000 for parameter adjustments and result values on validation. Algorithm 2 Layer MLP (CE)	pre-processing of from these mult error rate, simply 5% error percent s in each layer (c distortions] an training, 10,000 s on test set wit Distortion None	(width normalizatio i-column deep neuro defined as 35 out of age, with 6-layer N 784-2500-2000-1500 id no pre-processin 0 for validation an h optimal parameter Error (%) 1.6
[8]	Neural Networks for Image Classification Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition Best Practices for Convolution neural networks Applied to Visual Document	150-10 [elastic distortions] and p 0.23% accuracy can be achieved networks (MCDNN). Neural network has achieved an 10,000 digits misclassified or 0.3 architecture or number of neuron 1000-500-10) (on GPU) [elastic involved. Split training set in 50,000 for parameter adjustments and result values on validation. Algorithm 2 Layer MLP (CE) 2 Layer MLP (CE)	pre-processing of from these mult error rate, simply 5% error percent s in each layer (c distortions] an training, 10,00 s on test set wit Distortion None Elastic	width normalizatio i-column deep neur defined as 35 out o age, with 6-layer N 784-2500-2000-1500 id no pre-processin o for validation an h optimal parameter Error (%) 1.6 0.7
[8]	Neural Networks for Image Classification Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition Best Practices for Convolution neural networks Applied to Visual Document	150-10 [elastic distortions] and 1 0.23% accuracy can be achieved networks (MCDNN). Neural network has achieved an 10,000 digits misclassified or 0.3 architecture or number of neuron 1000-500-10) (on GPU) [elasti involved. Split training set in 50,000 for parameter adjustments and result values on validation. Algorithm 2 Layer MLP (CE) 2 Layer MLP (CE)	pre-processing of from these mult error rate, simply 5% error percent s in each layer (c distortions] an training, 10,00 s on test set wit Distortion None Elastic Affine Elastic	(width normalizatio i-column deep neuro age, with 6-layer N 784-2500-2000-1500 ad no pre-processin 0 for validation an h optimal parameter Error (%) 1.6 0.7 1.1 0.4

K-NN, tangent distance	subsampling to 16x16 pixels	1.1
K-nearest-neighbors, Euclidean (L2)	None	5.0
SVM deg 4 polynomial	Deskewing	1.1
Virtual SVM deg-9 poly [distortions]	None	0.8
3-layer NN, 500+150 hidden units	None	2.95
Convolutional net LeNet-5, [no distortions]	None	0.95
Convolutional net LeNet-5, [huge distortions]	None	0.85

IV. CONCLUSION

The performance of the classifier can be measured in terms of ability to identify a condition properly (sensitivity), the proportion of true results (accuracy), number of positive results from the procedure of classification as false positives (positive predictions) and ability to exclude condition correctly (specificity) [4]. In this survey paper, we looked at different classifiers used with different features and parametric values performing with various accuracies and error rate. Classifiers ask nearest neighbors (KNN), proximal support vector machine, and neural network with different layers can perform well, but best performing classifier on MNIST dataset is convolution neural network (part of deep learning) and the performance is best in this classifier [10].

REFERENCES

- AnujDutt, AashiDutt, 'Handwritten Digit Recognition Using Deep Learning', (IJARCET) Volume 6, Issue 7, July 2017, ISSN: 2278 – 1323, Page number – 990-997
- [2]. Priya, Rajendra Singh, Dr. SoniChanglani, 'Handwritten Digit Recognition using Proximal Support Vector Machine', Journal of Emerging Technologies and Innovative Research, Volume 4, Issue 04, April 2017, ISSN Number: 2349-5162, Page No: 251-254
- [3]. Saeed AL-Mansoori, 'Intelligent Handwritten Digit Recognition using Artificial Neural Network', Int. Journal of Engineering Research and Applications, ISSN: 2248-9622, Vol. 5, Issue 5, (Part -3) May 2015, pp.46-51
- [4]. SwapnaPravaEkka, 'Recognition of Handwritten Digits using Proximal Support Vector Machine', Department of ECE,

EThesis NIT, Rourkela, 2014, ID Code - 6066

- [5]. Gaurav Jain, Jason Ko, 'Handwritten DigitsRecognition', Project Report, University of Toronto, 11/21/2008
- [6]. [6] Fabien Lauera, ChingY. Suenb, Gérard Blocha, 'A trainable feature extractor for handwritten digit recognition', Pattern Recognition Society. Published by Elsevier Ltd., Volume 40, Issue 6, June 2007, Pages 1816-1824, October 2006.
- [7]. Dan Cires anUeli Meier, JurgenSchmidhuber, 'Multi-column Deep Neural Networks for Image Classification', Journal reference: CVPR 2012, p. 3642-3649, Report number: IDSIA-04-12 Feb 2012
- [8]. Dan ClaudiuCiresan, Ueli Meier, Luca Maria Gambardella, JurgenSchmidhuber, 'Deep Big Simple Neural Nets Excel on HandwrittenDigit Recognition', Neural Computation, Volume 22, Number 12, December 2010
- [9]. Patrice Y. Simard, Dave Steinkraus, John C. Platt, 'Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis', Institute of Electrical and Electronics Engineers, Inc.,Inproceedings, ISBN: 0-7695-1960-1, Sept., 2003
- [10]. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 'Gradient-Based Learning Applied to Document Recognition', Proceedings of the IEEE, v. 86, pp. 2278-2324, 1998.
- [11]. JurgenSchmidhuber, 'Deep Learning in Neural Networks: An Overview', Technical Report IDSIA-03-14, April 2014.
- [12]. Berend-Jan van der Zwaag, 'Handwritten Digit Recognition:A Neural Network

Demo', B. Reusch (Ed.): Fuzzy Days 2001, LNCS 2206, pp. 762–771, 2001.

- [13]. Haider A. Alwzwazy, Hayder M. Albehadili, Younes S. Alwan, Naz E. Islam, 'Handwritten Digit Recognition Using Convolutional Neural Networks', IJIRCCE, Vol. 4, Issue 2, February 2016.
- [14]. Stefan Knerr, LConPersonnaz, and GCrard Dreyfus, 'Handwritten digit recognition by NeuralNetworks with Single-Layer Training', IEEE Transactions On Neural Networks, VOL. 3, NO. 6, Nov., 1992
- [15]. Faisal Tehseen Shah, Kamran Yousaf, 'Handwritten Digit Recognition Using Image Processing and Neural Networks', WCE 2007, VOL-1, July 2 - 4, 2007